Artemisia annua. Source: Jorge Ferreira. |
Let's begin with the conventional arguments on Chinese herbal medicine and its relationship to science. The first is East vs. West - polar opposites. The cultural critique of this dichotomy follows, i.e., the idea that both East and West are essentialist constructs, faulty to the core, one, by analogy to Edward Said, the product of Orientalism (one might call its opposite 'Occidentalism', pace Chen Xiaomei). Scholars such as Sean Hsiang-lin Lei and Vincanne Adams move around the edges of this subject.
Another line of commentary, developed out of the work of Kim Taylor and Elisabeth Hsu, runs along historiographical tracks laid down by Eric Hobsbawm, namely, that Chinese Traditional Medicine (TCM) was 'invented' in Maoist China and therefore is not 'traditional' at all. This revelation is taken several steps further in the writing of the polemicist Edzard Ernst, who condemns TCM as a sham and draws a parallel to the Nazis' fixation with homeopathy in the 1930s.
All great analyses produced by others who know far more than me - and represented rather briefly and crudely in the above summary (and apologies for that). I want to take a different approach . What I am interested in describing is the modern interpenetration of ('Western') biomedicine and Chinese herbal medicine to the extent that the two have become indistinguishable components of a new form of biomedicine we see today.
Hsu makes a point about the indivisibility of the 'two medicines' in a material sense, describing how Chinese medical cures sold in East Africa combine ostensibly Western preparations such as paracetamol with ostensibly Chinese cures based around herbs - in the same pill (here, pay wall). This represents a material form of alternative modernity.
What of this interpenetration, cast in institutional and scientific terms, beyond the materiality of the cure itself? After all, modern biomedical research is not about cures per se, but the evocation of future medical utility in the basic biological sciences.
Let's tackle this problem in two parts. In the first, I want to map out what contemporary biomedical TCM (BTCM) might be. Characteristics thus established, I will then describe how it might have arisen in conjunction with contemporary biomedicine.
Biomedical Traditional Chinese Medicine (BTCM)
Let us consider the ways in which BTCM is promoted, studied and described, using as our starting point a Nature supplement dedicated to the subject. (The WHO has more recently published a similar piece, available here.)
The first point is the tendency in this new discipline to describe 'modern medicine' as highly reductionist. Thus we learn that 'modern medicine, imported [into China] from the West, consists of chemically purified compounds that have been discovered through scientific investigation and tested in controlled clinical trials' and that 'for decades, European and US regulatory agencies held the view that a drug must be either a highly purified or synthetic agent.'
The Nature commentary probably sounds a little simplistic for anyone with a passing acquaintance with medical history - a history in which American, European and Chinese scientists reveal themselves to be (actually) rather sophisticated thinkers about the nature of health, medicines and healing. The point is that we have a biomedical straw-man (of weirdly simplistic orthodoxy) against which the more sophisticated forces of BTCM can react.
The second hallmark of BTCM is technological boosterism - in other words, that herbal medicine is a 'treasure house' of (now) lucrative cures waiting to be uncovered (to subvert Chairman Mao's comment on the matter, but not in the sense he meant it).
What is BTCM, as a laboratory practice? In an interesting article on South Korean research on herbal medicines, Jongyoung Kim described how herbal screening work was boring, creativity-sapping and ultimately soul-destroying. Junior investigators had to plow through organic extractions and bio-assays on different herbs, producing identikit data and dull, identikit papers.
This picture of labor practice will hardly surprise anyone who has visited a biomedical laboratory recently. It is the kind of repetitive work that requires no brain input and therefore can (when funds and technology allow) be readily outsourced or automated, or both.
There is a synergy between the practices of BTCM and those most biomedical/neo-liberal constructs, 'systems biology' and 'personalized medicine' - but let's leave that for another day.
Co-construction of herbal medicine and biomedical science
In any discussion on BTCM, attention invariably alights on qinghaosu/artemisinin as proof of concept. The drug, a sequiterpene lactone, was extracted from a herb traditionally used in Chinese medicine to treat fever. The special significance of the drug may not be that it works as a biomedicine (anti-malarial drugs are, after all, ten-a-penny), but because it articulates a larger project of biomedical reform, a story in which China plays a central part.
Typically, the artemisinin story is told along the lines of conventional pharmacognosy. Accordingly, credit for the work of discovering the drug falls to Tu Youyou, the Chinese scientist who isolated the active principle. However, this telling of the story - of pharmacognosy sui generis - misses out the broader significance of the drug in framing the post-1980 construction of BTCM - and the parallel story of its interpenetration with biomedicine.
It's worth noting in passing the coincidence between the contemporary globalization of Chinese medicine and equivalent changes in the practice of biological research (re-configured as 'biomedicine') that occured in the late 1970s and afterwards.This is probably nothing more than a coincidence.
Two points. The first as follows. Even casual acquaintance with the story of artemisinin reveals the importance of intellectual property issues in negotiations between the Chinese government on one side, and the World Health Organization on the other. The Chinese, by their own admission, were obsessed with safeguarding the intellectual property around what was actually a rather run-of-the-mill medical discovery.
Indeed, the post-1980 history of the drug was shaped by disputes over who owned what and who had the right to make the drug. Looking back, this seems all perfectly understandable, but in the context of the time, it is rather curious. Here was what amounted to government-backed research, conducted in academic centers, being pushed into a commercial context.
Of course, as it turned out, there was no way for the Chinese scientists to protect their IP, simply because such a legal concept did not exist in China in the years when the discovery was made (private property of any sort being anathema in a Communist regime). The important thing is that the Chinese wanted to protect their IP, even if such a move was deemed legally impossible.
What is interesting is that this is a time when, even in America, the various instruments of contemporary biomedical IP, such as routine patenting of unproven or non-commercial discoveries, the use of material transfer agreements, etc., were still in their infancy. Thus, I want to suggest that the evolving connections between academic research and intellectual property were made in important ways through the medium of artemisinin - ways of which we have zero understanding.
A second point. Chinese qinghaosu factories, which were designed to make the drug, notably the Guilin and Kunming plants, were deemed to be producing below GMP standards and therefore the drugs they made were not suitable to export, according to inspectors from the US Food and Drug Administration. By September 1982, Chinese manufacture for export had been effectively thwarted. But the point for the Chinese, at least in the only account we have of the process, was to learn how to implement GMP standards in Chinese pharmaceutical factories (see the Project 523 account, Zhang, et al., pp. 78-79).
The willing transfer of knowledge from American experts to China is a familiar scenario from that era - but a possibly critical role of artemisinin in the reform of the Chinese pharmaceutical trade needs to be investigated. In other words, what was the role of artemisinin in the broader story of the Chinese drug trade?
I want to suggest that, while also a medicine derived from traditional practices, artemisinin was one of the means by which the Chinese pharmaceutical trade modernized (and perhaps, also, American standards were revised and qualified). In this case, the supposed opposites of herbal medicine and biomedicine were constitutionally inseparable.
Source: Dartford Town Archive |
Synthetics were not the be-all-and-end-all of the modern drug trade, even in the West. Investigation (and production) of herbal medicines was in fact stock-in-trade of at least the British pharmaceutical industry. Wellcome, for example, operated a materia medica farm at Dartford in Kent in the 1930s, where the company grew foxgloves for the production of the heart drug digitalis (see the picture to side - and note the factory in the background).
We can take the story into the post-WWII period, to the 1950s - the chemical conglomerate Fisons set up a plantation in Nicaragua to grow Ipecacuanha root (source of emetine) [see: 'The End of a Chapter', a printed history of Whiffen and Sons, Ltd., by Rupert S. Law, B/WHF/245, 1972].
My point here is that these fragments of a yet-to-be-written history show that herbal extracts continued to have commercial value in the pharmaceutical industry in the mid-twentieth century. Furthermore, while herbal medicines probably declined in value as a source of revenue for firms after the 1950s (it was cheaper to make drugs from coal tar and petroleum, rather than exotic herbs), the trade did not give up on them entirely.
As this intriguing film shows (above), in the 1960s, a scientist called Roger Altounyan initiated research on khella tea, a traditional middle-eastern herbal remedy for spasm. By experimenting on himself, he found that khella derivatives were anti-allergenic (they stopped his asthma attacks from developing).
The fact that Fisons would commit to such a long-term development project on the drug - eight years - implies that herbal medicines were taken seriously within the management of the company.
Roche and artemisinin
That brings me back to artemisinin, which like Intal, must be one of the major triumphs of post-war pharmacognosy. In a study of herbal medicine research at the London School of Hygeine and Tropical Medicine, Taylor and Berridge make the point that researchers at the school were always receptive to herbal drugs - and indeed, when qinghaosu was announced to the world in 1979, the school commenced research on the drug without any qualms. In other words, herbal medicines were not a conceptual leap for the leading academic experts of the time.
In this final section I want to flesh out the artemisinin story by examining the work of the Swiss drug maker, Roche.
The Roche Far East Research Foundation, an organization that operated between 1970 and 1999 (in 1987 it seems to have been re-christened the 'Roche Asian Research Foundation'), is a little-known player in the emergence of qinghaosu. Working out what this organization actually did is rather difficult - Swiss drug company Roche's official history says nothing of it. Accordingly, I have gathered the following data through Google. Based in Hong Kong; its registered address was a mysterious post office box (no. 98595) in Tsim Sha Tsui - there is also reference to an office at 1332 Prince's Building (a tower block on Hong Kong Island); notable staff and collaborators included Dr. Keith Arnold, Dr. R. Laserre and Dr. T. Harinasuta.
Publications associated with the institution give us clues as to its work: apparently lacking its own laboratory facilities, it funded and organized conferences, helped Asian scientists publish their work in English-language journals and provided grants for scientific research and medical training in countries like Thailand, Indonesia, Singapore, Burma and China. Areas of interest included, at a minimum, infectious disease, mental health and 'psychotropic drugs'.
We can deduce that the foundation's aim was to tap medical expertise in Asia, look around for ideas, and perform a hearts and minds function among governments, academics and medical doctors. It was effectively an intelligence-gathering organization, appropriately based in Hong Kong, which, as a British colony adjacent to Communist China, served as a wider intelligence hub throughout the Cold War.
The big coup for the foundation, if one can call it that, occurred in 1979, when Keith Arnold found out about qinghaosu. How he actually obtained this information, we can only speculate, but the significance of it was that Roche established a relationship with a Chinese researcher, Li Guoqiao, at the Malaria Research Unit, Guangzhou College of Traditional Chinese Medicine (just across the border from Hong Kong, in Mainland China).
The extent to which these contacts benefited Roche financially is hard to gauge (anti-malarial drugs are not major profit centers), but the company certainly made some of the early running when G. Schmid and W. Hofheinz of the company's pharmaceutical research department in Basel succeeded in the first total synthesis of the drug, publishing their work in 1983 (here, pay wall). Roche also secured a contract as principal maker of the drug for the World Health Organization (WHO).
What is interesting is the way Roche moved the drug from a bit player in the anti-malarial game to the leading treatment for the disease, often in combination with another Roche product, mefloquine. Indeed, did Roche actively push the use of qinghaosu in Thailand and Vietnam? Certainly, the Roche Far East Foundation's already-established network of academic collaborators, notably Professors Nick White and François Nosten in Thailand are closely implicated in the story. In Vietnam, Keith Arnold directly recruited Professor Tran Tinh Hien to the program of study and promotion of the drug.
To move one step further, the apparent opposition of the WHO to the artemisinin program, typically read as an ideological bias against 'the East' or herbal medicine, might also be seen as an uneasiness about Roche's commercial projects. Ultimately, it seems to have been academic collaborators, not Roche directly, who conducted extensive clinical trials on qinghaosu, and vociferously argued for its use. The WHO eventually dropped its opposition and embraced the drug.
What I think we can say is that in the 1980s and 90s, 'biomedical' drug companies like Roche seem to have been receptive to the idea of herbal drugs - and were prepared to develop them and promote their use.
Conclusion
We know practically nothing about the actual relationship between 'traditional' knowledge and biological science in the production of drugs - but the cursory grab-bag of factoids I have assembled here suggests a rich history in which the two forms of knowledge have been thoroughly co-constructed.
To talk in terms of binary opposition is clearly fallacious and probably always was. If anything, science's supposed hostility to traditional knowledge is a manufacture of very recent vintage and has more to do with the epistemic practices of contemporary biomedicine (inflected as they are by the US Food & Drug Administration's very particular scientific culture as the key regulator of innovation in the pharmaceutical trade) - rather than some essentialist conflict over the 'truth' of traditional knowledge.
BTCM appears to thrive as a scientific practice in China and elsewhere.
Chinese Medicine schools are opening their doors to students and patients in the United States for treatment in acupuncture, acupressure, and Chinese herbology. Schools blend modern medical advances with Eastern technique and ideology to form a unique and effective field of medicine.Bu zhong Yi qi wan
ReplyDeleteI am thankful for this blog to gave me much knowledge regarding my area of work. I also want to make some addition on this platform which must be in knowledge of people who really in need. Thanks.
ReplyDeleterenovate บ้าน
Remarkable experience earned after reading all the points of this website. I tried hard to get clue about how I could prove content of its blogs not much effective but I surrendered all my weapons just after reading it.สมุนไพร จีน
ReplyDeleteI have read your article, it is very informative and helpful for me.I admire the valuable information you offer in your articles. Thanks for posting it.. acupuncture Suffolk county, NY
ReplyDeleteImpressive and powerful suggestion by the author of this blog are really helpful to reduce our hack-tic life. My own views are matching with author and I have experienced such.เห็ด หลิน จื อ แดง สกัด โครงการ หลวง
ReplyDeleteI came to this blog and it helped me to add few new points to my knowledge. Actually, I am trying to learn new thing wherever I find. Impressive written blog and valuable information shared here.เห็ด หลิน จื อ แดง ราคา
ReplyDeletePerfect example of speculation, empathy and expression. Here I learned a new way to speculate through author’s writing. It allowed me to feel a new way to speculate your thoughts and express them in an easy and clear way.เห็ด ถั่ง เช่า
ReplyDeleteHey great stuff nice info your passing on Impotence
ReplyDeleteA blog must be connected to the person in need. It is really important to understand the actual feel of such necessity and the essence of objective behind it. Author must give proper time to understand every topic before writing it.XM ข้อดี
ReplyDeleteNice post. I was checking constantly this blog and I’m impressed! Extremely useful info specially the last part I care for such information a lot. I was seeking this certain info for a long time. Thank you and good luck. tcm singapore recommend
ReplyDeleteHi, I do think this is an excellent site. I stumbledupon it ;) I am going to return once again since I bookmarked it. Money and freedom is the greatest way to change, may you be rich and continue to guide others.
ReplyDeletetủ quần áo gỗ
Hi! I could have sworn I’ve been to your blog before but after going through a few of the articles I realized it’s new to me. Anyways, I’m definitely delighted I discovered it and I’ll be bookmarking it and checking back regularly!
ReplyDeletecây treo đồ